Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme.

نویسندگان

  • A Puig
  • H F Gilbert
چکیده

Reduced, denatured lysozyme tends to aggregate at neutral pH, and competition between productive folding and aggregation substantially reduces the efficiency of refolding (Goldberg, M.E., Rudolph, R., and Jaenicke, R. (1991) Biochemistry 30, 2790-2797). Protein disulfide isomerase (PDI), a catalyst of oxidative protein folding, has a variety of effects on the yield of native lysozyme during the oxidative refolding of the reduced, denatured protein. Depending on the concentration of lysozyme, the concentration of PDI, and the order in which lysozyme and PDI are added to initiate folding, PDI can produce a substantial increase or a substantial decrease in the recovery of native lysozyme, when compared with the uncatalyzed reaction. In the presence of a glutathione redox buffer, denatured lysozyme (1-10 microM) partitions almost equally between productive folding leading to native lysozyme (50-63%) and non-productive fates including the formation of disulfide cross-linked aggregates. At the higher lysozyme concentrations examined (5-10 microM), substoichiometric concentrations of PDI (0.5-1 microM) exhibit "anti-chaperone" activity; PDI actively diverts most of the denatured lysozyme away from productive folding so that only 17 +/- 9% of the lysozyme is recovered as native enzyme. PDI's anti-chaperone activity results in extensive intermolecular disulfide crosslinking of lysozyme into large, inactive aggregates. On the other hand, if PDI is initially present at a large molar excess (5-10-fold) when denatured lysozyme is diluted to initiate folding, PDI demonstrates a chaperone-like activity that prevents aggregate formation and promotes correct folding. When PDI's chaperone activity is dominant, virtually all of the denatured lysozyme is correctly folded. The schizophrenic chaperone/anti-chaperone nature of PDI activity accounts for a number of observations on in vivo protein folding, including the necessity for maintaining a high concentration of PDI in the endoplasmic reticulum and the formation of disulfide cross-linked aggregates in the endoplasmic reticulum during the expression of disulfide-containing proteins (deSilva, A., Braakman, I., and Helenius, A. (1993) J. Cell. Biol. 120, 647-655).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity.

Protein disulphide isomerase (PDI) shows chaperone and anti-chaperone activities in assisting refolding of denatured and reduced lysozyme in redox Hepes buffer, but only chaperone activity in phosphate buffer and redox Hepes buffer containing 0.1 M NaCl. In non-redox Hepes buffer its anti-chaperone activity is very weak. PDI displays its anti-chaperone activity only for those substrates showing...

متن کامل

Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme.

Folding catalysts of the endoplasmic reticulum (ER), such as protein disulfide isomerase (PDI), accelerate the slow chemical steps, such as disulfide bond formation, that accompany protein folding. Molecular chaperones of the ER, notably the heavy chain-binding protein, BiP (grp78), bind and release unfolded proteins in an ATP-dependent fashion. In vitro, the fate of reduced, denatured lysozyme...

متن کامل

Analysis of the Isomerase and Chaperone-Like Activities of an Amebic PDI (EhPDI)

Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stres...

متن کامل

Both the isomerase and chaperone activities of protein disulfide isomerase are required for the reactivation of reduced and denatured acidic phospholipase A2.

The spontaneous reactivation yield of acidic phospholipase A2 (APLA2), a protein containing seven disulfide bonds, after reduction and denaturation in guanidine hydrochloride is very low. Protein disulfide isomerase (PDI) markedly increases the reactivation yield and prevents the aggregation of APLA2 during refolding in a redox buffer containing GSH and GSSG. S-methylated PDI (mPDI), with no is...

متن کامل

DsbG, a protein disulfide isomerase with chaperone activity.

DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 10  شماره 

صفحات  -

تاریخ انتشار 1994